
1

CS 638 Web Programming

ASP.NET

Lecture 13

CS 638 Web Programming – Estan & Kivolowitz

Definitions

ASP dot Net
ASP = Active Server Pages

Superset of HTML + Programs that get rendered 
(the Active part) into plain HTML

dot Net
A well done but enormous object oriented 
distillation of all the services of Windows

CS 638 Web Programming – Estan & Kivolowitz

Other Examples of “Active” Pages

Take “Active” to mean that a server 
processes non-HTML information to generate 
a final HTML page
Many other examples of “Active” pages:

PHP, Perl, Active Java, javascript (client)
Active Python, etc.

Without a concept of “Active” pages, every 
conceivable page would be “hard coded”

CS 638 Web Programming – Estan & Kivolowitz

ASP.NET “Page”

The typical ASP.NET page is two files
foo.aspx Page layout
foo.aspx.cs “Code Behind” implementation

The “.cs” refers to C# - other languages are 
possible such as Visual Basic and Python
Separation of layout from implementation is a 
VERY good thing

CS 638 Web Programming – Estan & Kivolowitz

Trivial ASPX File
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Stub.aspx.cs" Inherits="Stub" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="lblTime" runat="server" />
</div>
</form>

</body>
</html>

CS 638 Web Programming – Estan & Kivolowitz

Trivial ASPX File

Entire “Page” directive for the server only
CodeFile says where implementation is
Inherits defines Class name – the whole page 
becomes an instance of this class
Runat tells server to make the object visible 
in the class – value always “server”
All ASP.NET objects begin with “<asp:”
Look for “lblTime” in next slide



2

CS 638 Web Programming – Estan & Kivolowitz

Trivial Code Behind File
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Stub : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

lblTime.Text = DateTime.Now.ToLongTimeString();
}

} CS 638 Web Programming – Estan & Kivolowitz

Trivial Code Behind File

Class name same as defined in ASPX file
“partial” class – notice you don’t see lblTime’s
C# definition, it is elsewhere
“Page_Load” is an event handler that all 
implementations have by default
lblTime is an instance of the Label class

CS 638 Web Programming – Estan & Kivolowitz

Output from Trivial Page
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head><title>

Untitled Page
</title></head>
<body>

<form name="form1" method="post" action="Stub.aspx" id="form1">
<div>
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="/stuff" />
</div>

<div>
<span id="lblTime">2:52:13 PM</span>

</div>
</form>

</body>
</html>

CS 638 Web Programming – Estan & Kivolowitz

What Just Happened?

Browser user asks for Stub.aspx
Server checks to see if Stub.aspx.cs needs to 
be compiled
Stub.aspx.cs is executed in various stages 
part of the server “lifecycle” of the page
Second to last stage is HTML “rendering” into 
the layout specified by ASPX file

The final HTML is composed and returned

CS 638 Web Programming – Estan & Kivolowitz

Concepts Before “Lifecycle”

Discuss three concepts before lifecycle can 
be discussed

State
Postback events
Lifecycle events

CS 638 Web Programming – Estan & Kivolowitz

State in a Stateless World
Some controls keep their history or “state”
Example: text box……
<asp:TextBox runat="server" ID="tbTextBox" />
<asp:Button runat="server" ID="btnButton" Text="Press Me" /><br />
<asp:Label runat="server" ID="lblText" />
……

protected void Page_Load(object sender, EventArgs e)
{

lblText.Text = tbTextBox.Text;
}



3

CS 638 Web Programming – Estan & Kivolowitz

How is State Maintained?
ASP.NET has several alternative methods
Most common is use of VIEWSTATE

Content of VIEWSTATE is encrypted state 
information (potentially long string)
Gets around stateless environment by tagging 
along in the page’s HTML from server to browser 
and back again
“Invisible” HTML input object

<input type="hidden" name="__VIEWSTATE" 
id="__VIEWSTATE" value="serialized stuff" />

CS 638 Web Programming – Estan & Kivolowitz

Serialization
How does the gibberish in VIEWSTATE 
represent real data?

Serialization is the process of converting a 
complex object to a series of bytes for storage 
http://www.codeproject.com/csharp/objserial.asp
Deserialization is the reverse: unpacking a series 
of bytes into an original form

Old fashioned: write binary data
Modern general purpose way: XML (perhaps 
encrypted)

CS 638 Web Programming – Estan & Kivolowitz

.NET Serialization
Any .NET object can be serialized / 
deserialized using standard functions
Data is created as name / value pairs of text 
and binary along with specification of the 
object (data types etc.)
Result is unencrypted
ASP.NET handles serialization and
encrypting for you of VIEWSTATE and 
“Session”

CS 638 Web Programming – Estan & Kivolowitz

XML vs. .NET Serialization
XML

Entirely text
Meant for humans and 
computers
Naturally handles large 
volumes of data
Easily searched, 
modified, extended

.NET Serialization
Text / binary mixed
Meant for computers

Meant for smaller data 
objects

You will learn more about XML later in the semester

CS 638 Web Programming – Estan & Kivolowitz

Other Means of Preserving State

Cookies
State information is “serialized” and stored on client’s 
computer – privacy implications

URL “Query Strings”
State information is “serialized” and tagged onto the URL 
of the page

Database
Allows for long term state preservation on server

Session
State information “serialized” and stored in memory of 
server

CS 638 Web Programming – Estan & Kivolowitz

Postback Events

A postback happens when something causes 
the browser to send a request back to the 
server (button push, for example)
When the request arrives at the server, it is 
examined to see what caused the postback 
and an “event” is “raised”
Fancy way of saying if some code is defined 
to “handle” the event, it is called



4

CS 638 Web Programming – Estan & Kivolowitz

Postback Events and Handlers
In ASPX file:

<asp:Button runat="server" ID="btnPushMe" Text="Push Me" 
OnClick="PushMeClicked" />

In Code-Behind file:
protected void PushMeClicked(object sender, EventArgs e)
{

Response.Write("Button clicked.<br/>");
btnPushMe.Text = "Thanks";

}

CS 638 Web Programming – Estan & Kivolowitz

Postback and Life Cycle

Postback events trigger on the client but are 
handled on the server
Handling of the postback event is part of the 
lifecycle of a page (see next)
Page “lifecycle” are the stages of handling on 
the server

CS 638 Web Programming – Estan & Kivolowitz

Lifecycle Events

As the processing of the page (on the server) 
transits from stage to state, various lifecycle 
events are “raised”

Fancy way of saying various methods get called
Examples:

OnInit, OnLoad, OnLoadComplete, etc.
You “override” only the ones you need

CS 638 Web Programming – Estan & Kivolowitz

ASP.NET Lifecycle

Many places to insert handlers
Highlights:

OnInit – user controls have been initialized
OnLoad happens before controls are handled
Control (buttons, etc.) events handled
Then OnLoadComplete

Catch up events for dynamic controls 
(controls added by program code)


