ASP.NET

Lecture 13

CS 638 Web Programming

Definitions @

0 ASP dot Net

o ASP = Active Server Pages

o Superset of HTML + Programs that get rendered
(the Active part) into plain HTML

0 dot Net

a A well done but enormous object oriented
distillation of all the services of Windows

CS 638 Web Programming — Estan & Kivolowitz

Other Examples of “Active” Pages @

a Take “Active” to mean that a server
processes non-HTML information to generate
a final HTML page

o Many other examples of “Active” pages:

a PHP, Perl, Active Java, javascript (client)
Active Python, etc.

o Without a concept of “Active” pages, every
conceivable page would be “hard coded”

CS 638 Web Programming — Estan & Kivolowitz

ASP.NET “Page” @

a The typical ASP.NET page is two files
o foo.aspx Page layout
o foo.aspx.cs “Code Behind” implementation

a The “.cs” refers to C# - other languages are
possible such as Visual Basic and Python

a Separation of layout from implementation is a
VERY good thing

CS 638 Web Programming — Estan & Kivolowitz

Trivial ASPX File @

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Stub. asigs“ Inherits="Stub" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trangitional/EN"
“http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-transitional.dtd"

<html xmIns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="form1" runat=/Server">
<div>
<aspiabel ID="IblTime" runat="server" />

<Idiv> \

</form>
</body>
CS 638 Web Programming — Estan & Kivolowitz

</html>

Trivial ASPX File @

o Entire “Page” directive for the server only
a CodeFile says where implementation is

a Inherits defines Class name — the whole page
becomes an instance of this class

o Runat tells server to make the object visible
in the class — value always “server”

a All ASP.NET objects begin with “<asp:”
o Look for “IbITime” in next slide

CS 638 Web Programming — Estan & Kivolowitz

Trivial Code Behind File @

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.Ul;

using System.Web.Ul.WebControls;

using System.Web.Ul.WebControls.WebParts;
using Systen.Web.UI.HtfilControls;

public partial class St ?/stem.Web.Ul.Page
protected vgid Page_[oad(object sender, EventArgs e)
IblTime.Text = DateTime.Now.ToLongTimeString();

}

} CS 638 Web Programming — Estan & Kivolowitz

Trivial Code Behind File @

0 Class name same as defined in ASPX file

o “partial” class — notice you don’t see IblTime’s
C# definition, it is elsewhere

o “Page_Load” is an event handler that all
implementations have by default

o IblTime is an instance of the Label class

CS 638 Web Programming — Estan & Kivolowitz

Output from Trivial Page @

<IDOCTYPE html PUBLIC "-/W3C//DTD XHTML 1.0 T 5 ">

<html xmins="http:/Amw.w3.0rg/1999/xhtml" >
<head><title>
Untitled Page

</title></head>
<body>

<form name="form1" method="post" action="Stub.aspx" id="form1">
<div>
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="/stuff" />
</div>

<div>

2:52:13 PM

</div>

</form>
</body>
</html>

CS 638 Web Programming — Estan & Kivolowitz

What Just Happened? @

o Browser user asks for Stub.aspx

o Server checks to see if Stub.aspx.cs needs to
be compiled

o Stub.aspx.cs is executed in various stages
part of the server “lifecycle” of the page

o Second to last stage is HTML “rendering” into
the layout specified by ASPX file
a The final HTML is composed and returned

CS 638 Web Programming — Estan & Kivolowitz

Concepts Before “Lifecycle” @

o Discuss three concepts before lifecycle can
be discussed
o State
o Postback events
o Lifecycle events

CS 638 Web Programming — Estan & Kivolowitz

State in a Stateless World @

o Some controls keep their history or “state”
o Example: text box

<asp:TextBox runat="server" ID="tbTextBox" />
<asp:Button runat="server" ID="btnButton" Text="Press Me" />

<asp:Label runat="server" ID="IblText" />

protected void Page_Load(object sender, EventArgs e)

IbIText. Text = tbTextBox.Text;

ededed \

CS 638 Web Programming — Estan & Kivolowitz

How is State Maintained? @

0 ASP.NET has several alternative methods

a Most common is use of VIEWSTATE

o Content of VIEWSTATE is encrypted state
information (potentially long string)

o Gets around stateless environment by tagging
along in the page’s HTML from server to browser
and back again

a “Invisible” HTML input object

<input type="hidden" name="__ VIEWSTATE"
id="__ VIEWSTATE" value="serialized stuff" />

CS 638 Web Programming — Estan & Kivolowitz

&

Serialization W

a How does the gibberish in VIEWSTATE
represent real data?

o Serialization is the process of converting a
complex object to a series of bytes for storage

o Deserialization is the reverse: unpacking a series
of bytes into an original form

o Old fashioned: write binary data

a Modern general purpose way: XML (perhaps
encrypted)

CS 638 Web Programming — Estan & Kivolowitz

.NET Serialization @

o Any .NET object can be serialized /
deserialized using standard functions

o Data is created as name / value pairs of text
and binary along with specification of the
object (data types etc.)

o Result is unencrypted

a ASP.NET handles serialization and
encrypting for you of VIEWSTATE and
“Session”

CS 638 Web Programming — Estan & Kivolowitz

XML vs. .NET Serialization @
XML .NET Serialization
o Entirely text o Text/ binary mixed

o Meant for humans and o Meant for computers
computers

o Naturally handles large o Meant for smaller data
volumes of data objects

o Easily searched,
modified, extended

You will learn more about XML later in the semester

CS 638 Web Programming — Estan & Kivolowitz

Other Means of Preserving State @

o Cookies
o State information is “serialized” and stored on client’'s
computer — privacy implications
o URL “Query Strings”
o State information is “serialized” and tagged onto the URL
of the page

o Database
o Allows for long term state preservation on server
o Session

o State information “serialized” and stored in memory of
server

CS 638 Web Programming — Estan & Kivolowitz

Postback Events @

a A postback happens when something causes
the browser to send a request back to the
server (button push, for example)

a When the request arrives at the server, it is
examined to see what caused the postback
and an “event” is “raised”

o Fancy way of saying if some code is defined
to “handle” the event, it is called

CS 638 Web Programming — Estan & Kivolowitz

Postback Events and Handlers @

o In ASPX file:

<asp:Button runat="server" ID="btnPushMe" Text="Push Me"
OnClick="PushMeClicked" />

0 In Code-Behind file:

protected void PushMeClicked(object sender, EventArgs e)
{

Response.Write("Button clicked.
");
btnPushMe.Text = "Thanks";

CS 638 Web Programming — Estan & Kivolowitz

Postback and Life Cycle @

o Postback events trigger on the client but are
handled on the server

a Handling of the postback event is part of the
lifecycle of a page (see next)

o Page “lifecycle” are the stages of handling on
the server

CS 638 Web Programming — Estan & Kivolowitz

Lifecycle Events @

o As the processing of the page (on the server)
transits from stage to state, various lifecycle
events are “raised”

a Fancy way of saying various methods get called

o Examples:

a Onlnit, OnLoad, OnLoadComplete, etc.
o You “override” only the ones you need

CS 638 Web Programming — Estan & Kivolowitz

ASP.NET Lifecycle @

a Many places to insert handlers

a Highlights:
a Onlnit — user controls have been initialized
o OnLoad happens before controls are handled
o Control (buttons, etc.) events handled
a Then OnLoadComplete

a Catch up events for dynamic controls
(controls added by program code)

CS 638 Web Programming — Estan & Kivolowitz

